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Abstract

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder, which is a developmental and
epileptic encephalopathy occurring in 1 in every 40,000 to 60,000 live births, was the subject
of this computational investigation. This study provided a comprehensive list of missense
variants (156) seen in the human population within the CDKL5 protein. Furthermore, the
list of CDKL5 binding partners was updated to include four new entries. Computational
modeling resulted in 3D structure models of twenty-four CDKL5-target protein complexes.
The CDKL5 stability changes upon the above-mentioned missense mutations that were
modeled, and it was shown that the corresponding folding free energy changes (∆∆Gfolding)
caused by pathogenic variants are much larger than the ∆∆Gfolding caused by benign vari-
ants. The same observation was made for the binding free energy change (∆∆Gbinding).
This resulted in a protocol that allowed for the reclassification of missense variants with
unknown or conflicting significance into pathogenic or benign. It was demonstrated that
such reclassification is more reliable than using leading tools for pathogenicity predictions,
since the latter failed to correctly predict known pathogenic/benign variants. Furthermore,
the study demonstrated that pathogenicity is linked with the disturbance of thermody-
namics quantities such as ∆∆Gfolding and ∆∆Gbinding, paving the way for development of
therapeutic solutions.

Keywords: CDKL5; 3D structure model; CDKL5 deficiency syndrome; in silico modeling;
pathogenic variant; missense mutation; folding free energy; binding free energy

1. Introduction
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), catalogued in

online mendelian inheritance in man (OMIM ID: 300203, 300672) [1], is a severe neurode-
velopmental disorder that is also known as early infantile epileptic encephalopathy, which
is classified as a developmental and epileptic encephalopathy (DEE) [2,3]. CDD is esti-
mated to affect approximately 1 in every 40,000 to 60,000 live births [4–7] and arises from
pathogenic variants in the CDKL5 gene, resulting in the production of a nonfunctional
protein [8]. This gene, also known as serine threonine kinase 9 (STK9), is located on the X
chromosome at position at position Xp22.13 [9].

Although it was originally classified as an early-onset seizure subtype of Rett syn-
drome, the current understanding recognizes CDD as a separate and distinct neurodevelop-
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mental disorder [10]. Females are affected more frequently than males, with an estimated
female-to-male ratio of 4:1 [11,12]. However, the clinical severity of CDD can be compara-
ble between heterozygous females and hemizygous males, and in some cases, males may
exhibit more severe symptoms [13,14].

The clinical presentation of CDD encompasses a wide spectrum of severe neurological
impairments, with early-onset, drug-resistant epilepsy serving as a defining feature [15,16].
Seizures typically emerge within the first 2–3 months of life and are frequently unresponsive
to conventional antiepileptic therapies [17,18]. Features of seizure in CDD commonly in-
clude epileptic spasms and tonic seizures [5,15], while less frequent types encompass clonic,
atonic, absence, and hypermotor–tonic–spasm sequence episodes [19,20]. Severe global
developmental delay and intellectual disability are observed in all individuals with CDD,
typically becoming evident within the first months of birth [21,22]. Additional prominent
features include motor disturbances such as hypotonia, chorea, dystonia, and stereotyped
hand and leg movements, with only a small subset of patients achieving independent
ambulation [2,3,5,23,24]. Cortical/cerebral visual impairment (CVI) is commonly observed
in individuals with CDD [25,26]. Autonomic dysfunction is also prevalent, including sleep
disturbances, breathing irregularities such as apnea and hypoventilation, and gastrointesti-
nal issues that often necessitate gastrostomy tube placement [5,15,27,28]. Musculoskeletal
abnormalities, such as scoliosis, have been reported in a subset of patients [29]. Addi-
tionally, many individuals exhibit altered pain perception [30]. Although neuroimaging
is frequently unremarkable, some cases reveal delayed myelination of mild cerebellar
atrophy [31].

The CDKL5 protein belongs to the CMGC kinase group and serves as a key player
in cellular signaling pathways, encompassing cell-cycle regulation, proliferation, differ-
entiation, apoptosis, and gene expression regulation [32,33]. Reported CDKL5 variants
include missense variants, nonsense variants, frameshift variants, deletions, truncations,
splice variants, and intragenic duplications, with hundreds of known pathogenic variants
identified [34]. Most cases of CDD are typically caused by de novo variants, arising ei-
ther in the germline or post-zygotically after fertilization. A whole-genome sequencing
study of 197 patient–parent trios with DEE [35] identified a genetic diagnosis in 63 indi-
viduals, 84% of whom carried de novo variants, including variants in CDKL5, while only
10% had inherited variants, and the remaining 6% of cases were found to be copy number
variants (CNVs). Although the study was not specific to CDD, its findings support the
observation that inherited CDKL5 variants are exceptionally rare [35] and typically arise
from a heterozygous or mosaic mother. In such cases, the mother carries the variant on
one X chromosome (heterozygous) or in a subset of cells due to the postzygotic mutation
(mosaicism); clinical symptoms may be absent or mild due to skewed X-chromosome
inactivation (XCI) tending to silence the mutant copy of the CDKL5 gene, yet transmission
of the pathogenic allele to offspring remains possible [3,14,32]. The majority of pathogenic
missense variants are clustered within the N-terminal catalytic domain, suggesting that the
disruption of CDKL5’s kinase function is a key driver of CDD pathogenesis [32,36]. The
large C-terminal region of CDKL5 contributes to the regulation of its enzymatic activity,
subcellular localization, and protein stability, indicating its functional importance beyond
the catalytic domain [37]; however, the number of missense variants found in this region is
much smaller (44 out of 156) than in the catalytic domain (112 out of 156).

The catalytic activity of CDKL5 begins with autophosphorylation and progresses to
substrate protein phosphorylation. This activity is structurally supported by domains
within its N-terminal kinase domain, including an ATP-binding site (residues 19–43) and an
S/T kinase active site (residues 131–143) [32]. CDKL5 auto-phosphorylates on its own Y171
residue of its activation sequence (TEY motif; residues 169–171), which is hypothesized
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to induce its active kinase configuration [38]. This autophosphorylation event is critical
to regulating the catalytic activity of CDKL5, though the exact mechanism of this process
is unknown. Once activated, CDKL5 phosphorylates its substrates at a defined consen-
sus motif, RPX[S/T][A/G/P/S], with a given preference for serine (85%) over threonine
(15%) as a phosphorylation site [38–40]. The CDKL5 phosphorylates multiple neuronal
substrates, with several substrate-specific phosphorylation sites identified to date. Loss-
of-function variants disrupt these phosphorylation substrates, thus disrupting diverse
neuronal processes, and additional novel phosphorylation substrates continue to be identi-
fied; these are described later, along with their associated functions. Multiple substrates
of CDKL5 have been characterized and validated as phosphorylation substrates of the
kinase (reviewed in [32,41]). Beyond its catalytic core, CDKL5 contains a MAPK insert site
(residue 297) [41] and multiple nuclear trafficking signals, including two nuclear localiza-
tion signals (NLS1: 312–315; NLS2: 784–789) and a nuclear export signal (NES: 836–845),
which may regulate its subcellular distribution and substrate accessibility [32].

A recent study further expands this repertoire by identifying new phosphorylation
substrates for CDKL5 [42]. By using a patient-derived male iPSC cell line carrying the
CDKL5 variant c.175C > T (resulting in p.Arg59*, where the asterisk (*) denotes a premature
stop codon, according to HGVS nomenclature) [43] alongside CRISPR-Cas9 gene-edited
isogenic controls (genetically matched), the authors generated human iPSC-derived cor-
tical cells, which recapitulate features of CDD, such as impaired neurite outgrowth and
reduced phosphorylation of EB2, a known direct phosphorylation substrate for CDKL5 [42].
Based on this model, an unbiased phosphoproteomic analysis identified GTF2I, PPP1R35,
GATAD2A, and ZNF219 as the novel direct phosphorylation substrates of CDKL5 [42].

The goals of this current computational and literature search study are to provide a
comprehensive list of missense variants seen in the human population, to curate new
CDKL5 phosphorylation substrates, to generate a 3D structure of the corresponding
CDKL5-target complexes, to predict the effect of missense variants on CDKL5 stability
and binding, and to classify missense variants with unknown significance seen in the
human population.

2. Results
2.1. CDKL5 Variants, Structure, and Binding Partners
2.1.1. Curation and Structural Mapping of Missense CDKL5 Variants Associated with CDD

Using ClinVar [44], the 1000 Genomes Project (1KGP) [45], a recent work form the
literature [46], and gnomAD [47], we compiled a comprehensive set of CDKL5 vari-
ants (Figure 1A). In ClinVar, a search for the keyword “CDKL5” returned 2193 entries:
1517 single-nucleotide variants (SNVs), with the remaining variant types comprising dele-
tions (269), duplications (139), copy-number losses (107), copy-number gains (78), mi-
crosatellite (46), insertions (17), indels (16), complex variants (2), and inversions (2). From
these 1517 SNVs, 783 variants were found to be annotated with a “missense_variant” con-
sequence. Of those 783 variants, 485 were “missense variants”, 297 were annotated as
“missense_variant|intron_variant”, and 1 as “missense_variant|splice_donor_variant”.
Filtering further for the “CDKL5 disorder” condition yielded 139 “molecular consequence”
entries, from which only 120 missense variants were associated with CDKL5 disorder. Next,
the Genome Reference Consortium Human Build 38: GRCh38-mapped X-chromosome
VCF format file from The International Genome Sample Resource (IGSR) of the 1KGP was
downloaded and using variant effect predictor (VEP) [48], a total of 4480 variants were ex-
tracted within the CDKL5 gene region (chrX:18,425,583–18,663,629). Among 4480 variants,
4163 were “intron_variant”, and 19 were “missense_variant”. After excluding six mis-
sense variants in the neighboring RS1 gene and removing one duplicate, twelve unique
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“missense_variant” were obtained. Four of these overlapped with ClinVar, leaving eight
unique missense variants from 1KGP. Reviewing a recent study [46] added further unique
variants to the final collected missense variant dataset. Thus, the initial totals were
120 (ClinVar) + 8 (1KGP) + 30 (recent study: [46]) = 158. Then, each variant’s wild-
type amino acid position against the human CDKL5 reference protein sequence (Uniprot
ID: O76039), discarding two mismatches, to arrive at a final dataset of 156 missense vari-
ants, served as the CDKL5 missense variant dataset. Based on germline classification,
these 156 missense variants across the full-length CDKL5 protein include benign (20), likely
benign (10), benign/likely benign (15), likely pathogenic (22), pathogenic/likely pathogenic
(24), pathogenic (9), conflicting class of pathogenicity (13), and uncertain significance (43).
A total of 112 variants are located within the kinase domain, comprising benign (4), likely
benign (1), benign/likely benign (12), likely pathogenic (22), pathogenic/likely pathogenic
(24), pathogenic (9), conflicting classifications of pathogenicity (10), and uncertain signif-
icance (30). Finally, each variant’s allele frequencies were annotated from gnomAD [47]
(Figure 1A).

Later, curated variants were mapped onto the CDKL5 kinase domain (PDB ID: 4BGQ;
residue 1–302) (Figure 1B). In this representation, residues are color-coded by clinical
classification: blue for benign, red for pathogenic, and magenta for variants of uncertain
significance. Additional variant categories such as benign/likely benign, likely benign,
likely pathogenic, and pathogenic/likely pathogenic are detailed in Figure 1B but were
not included in structural mapping. To map potential interaction partners of CDKL5
residue Y171, we employed the “findclash” tool in UCSF Chimera [49]. This identified
van der Waals (VDW) contacts using a 4 Å overlap threshold, excluding hydrogen bond
contributions. The analysis revealed several interacting residues, including G22, A23, and
Y24. Notably, G22 carries two likely pathogenic variants (G22V and G22E), while Y24 is
associated with a “pathogenic/likely pathogenic” variant (Y24C). Moreover, Y171 interacts
not only with its adjacent TEY motif residues, T169 and E170, but also with several residues
harboring variants of uncertain significance, including D135G, D153V, A173D, and T174N,
corresponding to the D135, D153, A173, and T174 positions shown in the inset of Figure 1B.

2.1.2. CDKL5 Partners

To investigate the molecular interactions of CDKL5, we carried out a literature search
and extrapolated data from recent review articles [32,41]. The goal was not only to identify
such interactions, but also to provide the corresponding experimental evidence and to
outline the molecular function associated with the interactions. Below, we briefly outline
the additional interactions that were identified (all known partners and their functionalities
are provided in Supplementary Material). The results are summarized in Figure 2 and
Table 1.

In a recent TiO2-enriched, label-free phosphoproteomics study of CDKL5 P.(Arg59*)
iPSC-derived neurons versus isogenic controls, four novel CDKL5 phosphorylation targets
matched CDKL5’s consensus RPX[S/T][A/G/P/S] motif [39]. These include PP1 regulatory
subunit 35 (PPP1R35), General transcription factor II-I (GTF2I), GATA zinc finger domain
containing 2A (GATAD2A), and Zinc finger protein 219 (ZNF219) [42]. PPP1R35 was iden-
tified as a CDKL5 target (phosphosite S52), which functions as a regulatory subunit of PP1
at centrioles and primary cilia, where it mediates centriole-to-centrosome conversion [50],
supports cell-cycle progression [51], and directs ciliogenesis [51,52], which are essential for
neurogenesis and neuronal maturation [53]. In parallel, GTF2I (phosphosite: Ser 674) is a
multifunctional transcription factor that assembles at immediate–early promoters and reg-
ulates axon guidance, calcium signaling, and neuronal apoptosis [54], cell-cycle genes, and
differentiation programs [55–58]. Additionally, two Nucleosome Remodeling Deacetylase
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(NuRD) complex subunits, GATAD2A (phosphosite: Ser100) and ZNF219 (phosphosite:
Ser114), were found to be key players that may function to regulate chromatin remodeling
and activity-dependent gene programs central to neuronal plasticity [42].

Figure 1. Dataset curation and structural mapping of CDKL5 missense variants. (A) Variant dataset
curation. From the ClinVar database of NCBI, the query for “CDKL5” returned 2193 variants. Upon
multistep filtering, the unique missense variants were found to be 120. The 1000 Genomes Project
(1KGP), another database that hosts variant data from healthy individuals, resulted in 6 unique
missense variants for the CDKL5 gene region. A recent literature review [46] provides 30 unique
missense variants. By combining variants from these sources, a unique set of 156 missense variants
was assembled, and corresponding allele frequencies were retrieved from the gnomAD database.
Among these 156 curated variants, 112 are located within the kinase domain. (B) CDKL5 variants
mapped on the kinase domain of the CDKL5 protein. Residues interacting with CDKL5’s Y171 were
identified using UCSF Chimera’s “FindClash” tool with a 4 Å threshold (PDB ID: 4BGQ).
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Figure 2. CDKL5-mediated substrate phosphorylation across cellular compartments. CDKL5 orches-
trates diverse neuronal processes across distinct subcellular compartments, including cytoplasm,
synapse, centrosome, and nucleus. In the cytoplasm, CDKL5 phosphorylates MAP1S, MAPRE2/EB2,
ARHGEF2, IQGAP1 (dendritic morphology regulation), and AMPH1 to modulate microtubule dy-
namics and synaptic vesicle trafficking. Centrosomal/ciliary targets include CEP131, DLG5, and
PPP1R35, supporting ciliogenesis and cell-cycle progression. At synapses, CDKL5 binds PSD-95 and
NGL-1, influencing dendritic spine formation. In the nucleus, CDKL5 phosphorylates ELOA, EP400,
TTDN1, SOX9, GTF2I, GATAD2A, and ZNF219, linking its activity to transcriptional regulation
and chromatin remodeling, while the MECP2 phosphorylation mechanism is yet to be explored.
Additional targets include Cav2.3 (neuronal excitability), p62 (virophagy), SMAD3, DNMT1, and
HDAC4, highlighting CDKL5’s broad role in neuronal homeostasis. The illustration is inspired
by the sources ([41,42,59,60]) and other relevant literature cited in the text and sketched using the
open-source program Inkscape 1.2.2 [61].

Collectively, these CDKL5 binding partners span distinct cellular compartments and
functional categories, suggesting that CDKL5 orchestrates a multifaceted signaling network
in neuronal contexts. Disruption of CDKL5 kinase activity is therefore likely to perturb
these pathways, contributing to the molecular pathology of CDD.
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Table 1. Candidate CDKL5 binding partners with consensus motif.

SL UniProt Gene pSite Consensus Motif
(RPX[S/T][A/G/P/S]) Protein Evidence Source

1 Q92974 ARHGEF2 S122 TIRERPSsAIYPS Rho guanine nucleotide
exchange factor 2

Motif and
biochemical [32]

2 P49418 AMPH1 S293 PAPARPRsPSQTR Amphiphysin1 Motif and
biochemical [32]

3 Q9UPN4 CEP131 S35 PVSRRPGsAATTK Centrosomal protein of
131 kDa

Motif and
biochemical [32]

4 Q8TDM6 DLG5 S1115 QKRRRPKsAPSFR Disks large homolog 5 Motif and
biochemical [32]

5 Q14241 ELOA S311 EENRRPPsGDNAR Elongin A Motif and
biochemical [32]

6 Q96L91 EP400 S729 SPVNRPSsATNKA EE1A-binding protein p400 Motif and
biochemical [32]

7 Q66K74 MAP1S S871,
S900

KAPARPSsASATP,
DRASRPLsARSEP

Microtubule-associated
protein 1S

Motif and
biochemical [32]

8 Q15555 EB2/MAPRE2 S222 STPSRPSsAKRAS
Microtubule-associated
protein RP/EB family

member 2

Motif and
biochemical [32]

9 Q8TAP9 TTDN1 S40 GGGPRPPsPRDGY TTD non-photosensitive
1 protein

Motif and
biochemical [32]

10 P26358 DNMT1 N/A DNA methyltransferase 1 Biochemical [32]

11 P56524 HDAC4 S632 RPLSRAQsSPASAtF Histone deacetylase 4 Motif and
biochemical [32]

12 Q9HCJ2 NGL-
1/KIAA1580/LRRC4C S631 PLLIRMNsKDNVQET Netrin-G ligand-1 Motif and

biochemical [32]

13 P84022 SMAD3 N/A N/A Mothers against
decapentaplegic homolog 3 Biochemical [32]

14 P48436 SOX9 S199 ATEQTHIsPNAIFKA Transcription factor SOX-9 Biochemical [32]

15 P46940 IQGAP1 N/A N/A IQ Motif Containing
GTPase Activating Protein 1 Biochemical [32]

16 P51608 MeCP2 N/A N/A Methyl-CpG binding
protein 2 Biochemical [32]

17 P78352 PSD95/DLG4 N/A N/A Postsynaptic density
protein·95 Biochemical [32]

18 A0MZ66 SHTN1/SHOT1 N/A N/A Shootin1 Biochemical [32]

19 P78347 GTF2I S674 QSPKRPRsPGSNS General transcription factor
II-I

Motif and
biochemical [42]

20 Q8TAP8 PPP1R35 S52 SLSPRPDsPQPRH Protein phosphatase 1
regulatory subunit 35

Motif and
biochemical [42]

21 Q86YP4 GATAD2A S100 KSERRPPsPDVIV GATA zinc finger domain
containing 2A

Motif and
biochemical [42]

22 Q9P2Y4 ZNF219 S114 HQPERPRsPAARL Zinc finger protein 219 Motif and
biochemical [42]

23 Q15878 CACNA1E/Cav2.3 S14 AVVARPGsGDGD
Voltage-dependent R-type
calcium channel subunit

alpha-1E (Cav2.3)

Motif and
biochemical [62]

24 Q13501 SQSTM1/p62 T269/S272 RSRLTPVsPESS,
GGKRSRLtPVSP Sequestosome-1(p62) Biochemical [63]

These data were compiled from the following literature: [32,41,42]. N/A: Not Available.
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2.2. Homology Modeling of the CDKL5 Kinase Domain and CDKL5-Target Complex Prediction
Using ColabFold and CDKL5-Target Protein–Protein Docking Using HADDOCK3

All available CDKL5 structures in the protein data bank, including 4BGQ (resolu-
tion: 2.00 Å), 8CIE (resolution: 2.20 Å), and 9EPU (resolution: 2.60 Å), capture the N-
terminal kinase domain (residues 1–302). The more recent structures, 8CIE and 9EPU,
are co-crystallized with selective small-molecule inhibitors (YL-354 and CAF-382, respec-
tively). We selected 4BGQ for the downstream application because of its higher resolution,
2.00 Å, [64] and the absence of large conformational shifts that would hinder protein–
protein interaction modeling. While 4BGQ includes two engineered phosphomimetic
variants, T169D and Y171E, which were introduced to mimic phosphorylation and promote
an active kinase conformation [49], these positions were reverted to the wild-type residues,
Thr169 and Y171, during the homology modeling using Modeller 10.4 [65]. The resulting
model was superimposed on the original 4BGQ structure to validate the structural fidelity
using UCSF Chimera [49]. The root mean square deviation (RMSD) between 276 pruned
atom pairs was 0.268 Å, indicating strong preservation of the native fold [65] (Figure 3A).

We applied ColabFold 1.5.5, a high-throughput adaptation of AlphaFold-Multimer [66],
to predict the complex of CDKL5 with its target proteins (Table 1) and systematically eval-
uated the spatial relationship between CDKL5 residue Y171 and each substrate’s known
phosphorylation site (Figure 3B(1–18)). Y171 lies within the conserved TEY activation
motif of CDKL5 and is critical for catalytic activity, so close proximity to a substrate’s phos-
phorylation site could be a strong indicator of a viable phosphorylation event. Therefore,
all ColabFold-generated complexes were visualized in UCSF Chimera [49], and mini-
mum distances between the Y171 (hydroxyl oxygen) and the known phosphosite, Serine
(hydroxyl group), of each substrate were measured and visually inspected. Across the
full set of substrates (Figure 3B(1–18) and Table 1), three complexes exhibited particu-
larly short Y171-phosphoserine distances, suggesting potential for direct phosphorylation:
CDKL5-AMPH1, CDKL5-SOX9, and CDKL5-GATAD2A (Figure 3B(2,11,17)). Upon visual
inspection of each substrate’s phosphorylation loop, most lacked a well-defined fold, except
SOX9 and ZNF219, both of which possessed an alpha-helix adjacent to the phosphosite
(Figure 3C(III,IV)). Therefore, based on both close proximity and a properly folded phos-
phoserine region, we selected CDKL5-AMPH1, CDKL5-SOX9, CDKL5-GATAD2A, and,
additionally, CDKL5-ZNF219 for our downstream studies, as shown in Figure 3C(I–IV).

Upon CDKL5-target protein complex modeling using ColabFold, the HADDOCK3
docking was performed for CDKL5 in complex with each selected substrate, using
phosphosite-centered ambiguous interaction restraints (AIRs). In all models, the phospho-
serine residue was consistently positioned within hydrogen-bonding distance (2.7–3.3 Å)
of CDKL5’s catalytic Y171, confirming a well-posed docking into the phosphosite
(Figure 4A–D).

To compute binding energetics, we extracted per-model energy terms from HAD-
DOCK3’s CAPRI output and computed the mean ± SD for six metrics: vdW, Elec, Desolv,
AIR, total energy, and HADDOCK score (Supplementary Figure S1; Supplementary Table S2).
Among the generated complexes, CDKL5-SOX9 and CDKL5-ZNF219 demonstrated the
most favorable non-bonded interactions and, at the same time, interacted with CDKL5 Y171
residue; thus, they were appended to the structural models predicted with ColabFold [66].
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Figure 3. Structural modeling and interaction analysis of CDKL5 kinase domain with predicted
substrate complexes. (A) Homology model of the CDKL5 kinase domain (residues 1–302) built with
Modeller10.4 [65], using PDB ID 4BGQ as the template. (B) Predicted CDKL5-target protein com-
plexes for each of the twenty-four collected substrates (some of the complexes were not shown due to
low confidence in prediction/error in predictions) using ColabFold (a high-throughput adaptation of
AlphaFold-Multimer) [66]. Predicted confidence (pLDDT) scores for CDKL5-partner complexes are
provided in the Supplementary Table S7 and Figure S3. Colored circles indicate key residues: blue
highlights the CDKL5 Y171, and red marks highlight the substrate’s phosphorylation site. (C) Struc-
tural assessment of CDKL5-target protein–protein interactions. (C(I)) In the CDKL5-AMPH1(S293)
complex, CDKL5 Y171 and substrate phosphosite residue S293 are in close proximity. (C(II)) In the
CDKL5-GATAD2A(S100) complex, CDKL5 Y171 and GATAD2A S100 seem close enough, but there
are no direct interactions. (C(III)) In CDKL5-SOX9(S199), CDKL5 Y171 and SOX9’s phosphorylation
site S199 also seem close enough. (C(IV)) In CDKL5-ZNF219(S114), CDKL5 Y171 and the ZNF219’s
phosphopho-site S114 are far from each other.
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Figure 4. Structural and energetic profiles (Supplementary Table S3) of CDKL5-target protein com-
plexes. (A–D) HADDOCK3-docked models of CDKL5 (blue) bound to four substrates (red) known
as phosphorylation targets: (A) AMPH1 at S293, (B) GATAD2A at S100, (C) SOX9 at S199, and
(D) ZNF219 at S114, where each inset highlights each phosphoserine-positioned hydrogen-bonding
proximity (2.7–3.3 Å, yellow lines) to the catalytic residue Y171.A, indicating direct engagement of
the active site.

2.3. Folding, Docking ∆∆Gfolding and ∆∆Gbinding Analysis, and Variant Reclassification

2.3.1. Folding Free Energy Change (∆∆Gfolding)

To assess the impact of missense variants on CDKL5 protein stability, we computed the
change in the folding free energy (∆∆Gfolding) using ten prediction tools (five for sequence-
based, and five for structure-based; see Section 4.3) and compared their distributions across
benign and pathogenic CDKL5 missense variants. Analyses were performed independently
for the full-length protein for the sequence-based methods (residue 1–960) and the kinase do-
main for structure-based methods (residue 1 to 302; Figure 5 and Supplementary Table S1).

Across the full-length protein (residues 1–960; Figure 5A), pathogenic variants con-
sistently exhibited more negative ∆∆Gfolding values, indicating greater destabilization as
compared to the benign variants. This trend was observed across all sequence-based
methods. For example, I-Mutant2.0 predicted a mean of −1.332 kcal/mol for pathogenic
variants compared to −0.800 kcal/mol for benign ones. DDGemb showed the strongest
separation with means of −1.364 and −0.114 kcal/mol for pathogenic and benign vari-
ants, respectively. SAAFEC-SEQ followed a similar pattern, with pathogenic variants
averaging −1.341 kcal/mol and benign ones averaging −0.948 kcal/mol. INPS showed
a moderate shift between benign and pathogenic classes, while DDGun shows minimal
separation, with benign variants centered near zero and pathogenic variants exhibiting
high variance. Focusing on the kinase domain (residues 1 to 302), which is functionally
critical, the separation between variant classes became more pronounced. Among sequence-
based tools (Figure 5B), I-Mutant2.0 predicted a mean ∆∆Gfolding of −1.332 kcal/mol for
pathogenic variants, and −0.183 kcal/mol for benign ones. DDGemb showed a similar
distinction, with means of −1.364 and −0.030 kcal/mol, respectively. SAAFEC-SEQ pre-
dicted −1.341 kcal/mol for pathogenic variants and −0.870 kcal/mol for benign ones.
INPS showed a moderate difference, while DDGun failed to distinguish between classes.
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Figure 5. Sequence- and structure-based folding free energy change (∆∆Gfolding in kcal/mol)
predictions for CDKL5 missense variants. Violin plots illustrate the distribution of predicted
∆∆Gfolding (kcal/mol) predictions for pathogenic and benign CDKL5 variants across five sequence-
based (A,B) and five structure-based (C,D) computational methods. ∆∆Gfolding values are plotted
for variants located within the full-length protein (residues 1–960) (A,C) and the kinase domain
(residues 1–302; (B,D). Blue and orange violins represent benign and pathogenic variants, respec-
tively, as classified by germline classification. Sequence-based methods include SAAFEC-SEQ,
I-Mutant2.0, INPS, DDGun, DDGemb, and structure-based methods include I-Mutant2.0, INPS,
DDGun, mCSM, and DDMut. The figure highlights overall trends in destabilization, with pathogenic
variants generally exhibiting more negative ∆∆Gfolding values, particularly in the kinase domain
(1–302) and in predictions from I-Mutant2.0, DDGemb, and mCSM. Among sequence-based methods,
I-Mutant2.0, DDGemb, and SAAFEC-SEQ moderately distinguish between benign and pathogenic
variants, with the clearest separation observed in the kinase domain (B). Structure-based methods
such as I-Mutant2.0, mCSM, INPS, and DDMut show even stronger separation, particularly within
the kinase domain (D). These results indicate that structure-based tools offer superior sensitivity in
detecting the destabilizing effects of variants, with I-Mutant2.0 (structure) and mCSM demonstrating
the strongest discriminatory performance between pathogenic and benign variants.

Structure-based tools provided even clearer class distinctions. In the full-length context
(Figure 5C), I-Mutant2.0 predicted a mean ∆∆Gfolding of −1.330 kcal/mol for pathogenic
variants and +0.002 kcal/mol for benign ones. mCSM showed a similar trend, with
means of −1.025 and −0.258 kcal/mol for pathogenic and benign variants, respectively.
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INPS predicted means of −0.928 kcal/mol for pathogenic variants and +0.100 kcal/mol
for benign ones. DDMut also separated the classes effectively, while DDGun remained
neutral for benign variants and destabilizing for pathogenic ones. Structure-based methods
delivered the strongest separation in the kinase domain (Figure 5D). mCSM predicted
a mean ∆∆Gfolding of −1.025 kcal/mol for pathogenic variants and −0.258 kcal/mol for
benign ones. I-Mutant2.0 (structure) maintained its strong performance, with predictions
of −1.330 and +0.002 kcal/mol for pathogenic and benign variants, respectively. INPS
predicted −0.928 kcal/mol for pathogenic variants and +0.100 kcal/mol for benign ones.
DDMut showed a similar pattern, while DDGun remained neutral for benign variants and
destabilizing for pathogenic ones.

These results demonstrate that structure-based ∆∆Gfolding predictors offer the most
reliable separation between pathogenic and benign CDKL5 variants (Figure 5D) compared
to the sequence-based methods. I-Mutant2.0 (structure) and mCSM emerged as the most
discriminative tools between benign and pathogenic variants. In cases where structural
models are unavailable, I-Mutant2.0 (sequence-based), DDGemb, and SAAFEC-SEQ pro-
vide suitable alternatives for predicting variant pathogenicity.

2.3.2. Binding Free Energy

We used the structural models of CDKL5 predicted by ColabFold [66] bound
to the corresponding target (SOX9 (197–202), AMPH1 (290–294), GATAD2A (97–101),
and ZNF219 (111–115), and carrying benign and pathogenic CDKL5 variants on the
CDKL5 kinase domain. We used four structure-based ∆∆Gbinding predictors (DDMutPPi,
iSee, mCSM-PPI, and SAAMBE-3D) to compute the impact of CDKL5 variants on
∆∆Gbinding of selected CDKL5-target protein complexes. Note that not all predictors
follow the same ∆∆Gbinding conventions. iSEE and SAAMBE-3D report values as
∆∆Gbinding = ∆Gmutant − ∆Gwildtype, while mCSM-PPI and DDMutPPI use the opposite
definition (∆∆Gbinding = ∆Gwildtype − ∆Gmutant); trends are therefore interpreted consis-
tently as pathogenic variants showing greater destabilization than benign, independent
of sign.

For CDKL5-SOX9 (phosphomotif: 197–202) (Figure 6, Column 1 from left), iSEE
predicted a mean ∆∆Gbinding of 1.86 kcal/mol versus 1.25 kcal/mol for benign, indi-
cating reduced binding affinity for the pathogenic variants. mCSM-PPI showed a sim-
ilar trend, with pathogenic variants averaging −0.91 kcal/mol and benign variants
−0.53 kcal/mol. DDMutPPI predicted more negative ∆∆Gbinding for pathogenic vari-
ants (−0.53 kcal/mol) compared to benign (−0.13 kcal/mol); similarly, SAAMBE-3D
showed minimal separation (0.44 vs. 0.22 kcal/mol). For CDKL5-AMPH1 (phosphomo-
tif residues: 290–294), pathogenic variants showed a substantial increase in ∆∆Gbinding

under iSEE (2.38 kcal/mol) compared to benign (1.35 kcal/mol), suggesting strong bind-
ing disruption. mCSM-PPI predicted more negative ∆∆Gbinding for pathogenic vari-
ants (−0.90 kcal/mol) versus benign (−0.55 kcal/mol). DDMutPPI and SAAMBE3D
showed smaller shifts (−0.30 vs. −0.07 kcal/mol and 0.29 vs. 0.15 kcal/mol, respec-
tively). For CDKL5-GATAD2A (phosphomotif residues: 97–101), iSEE again showed strong
class separation, with pathogenic variants averaging 2.56 kcal/mol and benign variants
1.26 kcal/mol. mCSM-PPI predicted −0.73 kcal/mol for pathogenic and −0.50 kcal/mol
for benign variants. DDMutPPI showed a modest shift (−0.42 vs. −0.13 kcal/mol),
while SAAMBE-3D yielded minimal separation (0.29 vs. 0.13 kcal/mol). For CDKL5-
ZNF219 (phosphomotif residue: 111–115), iSEE predicted a ∆∆Gbinding of 2.20 kcal/mol
for pathogenic variants versus 1.02 kcal/mol for benign. mCSM-PPI showed a sim-
ilar pattern (−0.74 vs. −0.52 kcal/mol), and DDMutPPI predicted −0.48 kcal/mol for
pathogenic versus −0.11 kcal/mol for benign. SAAMBE-3D again showed limited separa-
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tion (0.35 vs. 0.17 kcal/mol). Overall, iSEE consistently produced the largest ∆∆Gbinding

shifts between benign and pathogenic variants across all four complexes, supporting its use-
fulness in identifying binding-disruptive variants. mCSM-PPI also demonstrated reliable
separation, particularly in detecting destabilizing effects of pathogenic variants. DDMutPPI
offered moderate sensitivity, while SAAMBE-3D showed minimal discriminative power.

Figure 6. Structure-based ∆∆Gbinding (in kcal/mol) profiles of CDKL5 kinase-domain variants across
binding partners’ phosphosite motifs. Violin plots illustrate predicted changes in binding free energy
(∆∆Gbinding, kcal/mol) for benign (blue) and pathogenic (orange) single-residue variants within the
CDKL5 kinase domain (residues 1–302), evaluated at four phosphosite motifs corresponding to known
binding partners: SOX9 (phosphomotif: 197–202), AMPH1 (phoshomotif: 290–294), GATAD2A
(phosho-motif: 97–101), and ZNF219 (phoshomotif: 111–115). Each row represents one of four
structure-based predictors, namely DDMutPPI, iSEE, mCSM-PPI, and SAAMBE-3D, while columns
represent the respective CDKL5-target protein complex where the binding partner’s phosphosite
regions docked with the CDKL5’s TEY (169–171) motif using the HADDOCK3 program. White circles
inside violins indicate median ∆∆Gbinding values; inner bars denote interquartile ranges. Variant
counts for each germline class are shown in brackets at the ends of the corresponding x-axis categories.
Full summary statistics (n, mean, median, and SD) are available in Supplementary Table S4.
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2.3.3. Folding Threshold

To determine a reliable stability-based criterion for classifying CDKL5 missense vari-
ants, we analyzed structure-based ∆∆Gfolding predictions across five computational meth-
ods. For each variant, we computed folding free energy changes (∆∆Gfolding) from five
different methods and picked the maximum value across methods, and thus we find
∆∆GFmax for each variant. The four benign variants consistently showed low maximum
absolute ∆∆GFmax values, ranging from 0.09 to 0.68 kcal/mol (Figure 7(left)). In contrast,
the nine pathogenic variants exhibited higher ∆∆GFmax values, spanning from 0.86 to
3.42 kcal/mol (Figure 7(middle)). By selecting the midpoint between the largest benign
and smallest pathogenic ∆∆GFmax values, we defined a threshold of 0.77 kcal/mol (Figure 7
(right)). This cutoff separated the two classes, with all variants correctly classified according
to their clinical annotation.

Figure 7. Determination of ∆∆Gfolding cutoff in kcal/mol to differentiate pathogenic and benign
CDKL5 variants. (Left): The bar plots represent the absolute ∆∆Gfolding for four benign CDKL5
missense variants. Each colored bar corresponds to a distinct prediction method (I-Mutant2.0,
INPS, DDGun, mCSM, and DDMUT), while the gray bar denotes the maximum ∆∆Gfolding value
(∆∆GFmax) for each variant, with numerical values labeled. Note that DDGun predicted zero ka-
cal/mol ∆∆Gfolding for all benign variants. (Middle): Equivalent visualization for nine pathogenic
variants. (Right): All thirteen variants are ranked by ∆∆GFmax and color-coded by germline classi-
fication, with blue indicating benign and orange indicating pathogenic. A horizontal dashed line
at 0.77 kcal/mol marks the midpoint between the highest benign ∆∆GFmax value (0.68 kcal/mol)
and the lowest pathogenic ∆∆GFmax value (0.86 kcal/mol), defining an optimal threshold for variant
discrimination based on ∆∆Gfolding.

2.3.4. Binding Threshold

Firstly, for each CDKL5-target protein complex and each variant, we calculated the
mean absolute ∆∆Gbinding across four prediction methods (DDMutPPI, iSEE, mCSM-PPI,
and SAAMBE-3D). Benign CDKL5 variants induced only modest destabilization of part-
ner binding interfaces, with mean absolute ∆∆Gbinding values across the four methods of
0.42–0.82 kcal/mol for CDKL5-AMPH1 (motif 290–294; Figure 8(A1)), 0.45–0.58 kcal/mol
for CDKL5-GATAD2A (motif 97–101; Figure 8(A2)), 0.40–0.58 kcal/mol for CDKL5-
SOX9 (motif 197–202; Figure 8(A3)), and 0.29–0.77 kcal/mol for CDKL5-ZNF219 (mo-
tif 111–115; Figure 8(A4)); in each case, the iSEE predictor reported the highest shifts
(up to ~1.25 kcal/mol), while the other methods remained below ~0.70 kcal/mol. In
contrast, pathogenic variants caused substantially larger perturbations, with complex-
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average |∆∆Gbinding| values of 0.91–1.55 kcal/mol for CDKL5-AMPH1 (motif 290–294;
Figure 8(A5)), 0.93–1.47 kcal/mol for CDKL5-GATAD2A (motif 97–101; Figure 8(A6)),
0.95–1.38 kcal/mol for CDKL5-SOX9 (motif 197–202; Figure 8(A7)), and 0.89–1.32 kcal/mol
for CDKL5-ZNF219 (motif 111–115; Figure 8(A8)), again driven primarily by elevated
iSEE predictions. To distill these results into a single metric, for each variant, we de-
fined ∆∆GBmax as the maximum complex-average |∆∆Gbinding| across the four CDKL5-
partner interactions and plotted its value (Figure 8B). Benign ∆∆GBmax ranged from 0.45
to 0.82 kcal/mol, whereas pathogenic ∆∆GBmax spanned from 0.95 to 1.55 kcal/mol; by
placing a cutoff at the midpoint (0.88 kcal/mol) between the highest benign and lowest
pathogenic value, we achieved discrimination of clinical impact (benign/pathogenic),
demonstrating that ∆∆GBmax can be used as classifier of CDKL5 variant pathogenicity.

Figure 8. For each variant, the binding free energy changes (∆∆Gbinding) in kcal/mol were computed
using averaged values across CDKL5 binding partners, and the ∆∆GBmax threshold was subsequently
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determined. (A) Multi-panel bar charts of absolute ∆∆Gbinding for CDKL5-target protein complexes at
their consensus phosphosite motifs. (A1–A4) Binding free energy changes (∆∆Gbinding) due to benign
variants. (A5–A8) Changes in ∆∆Gbinding due to pathogenic variants for (A1,A5) CDKL5-AMPH1
(motif 290–294), (A2,A6) CDKL5-GATAD2A (motif 97–101), (A3,A7) CDKL5-SOX9 (motif 197–202),
and (A4,A8) CDKL5-ZNF219 (motif 111–115). In each panel, opaque colored bars show the mean
|∆∆Gbinding| across methods for each variant. Variant labels include this complex average across
methods in parentheses (e.g., “I3F (0.58)”). Legends above the panels represent the type of bars (meth-
ods and average). (B) Sorted bar plot of ∆∆GBmax: the maximum complex average |∆∆Gbinding|
across the four CDKL5-target protein motifs for all thirteen variants (four benign and nine pathogenic).
Blue bars denote benign; orange bars denote pathogenic. Numerical ∆∆GBmax values are labeled
above each bar. The dashed gray line indicates the classification cutoff (0.88 kcal/mol), defined as the
midpoint between the highest benign ∆∆GBmax (0.82 kcal/mol) and the lowest pathogenic ∆∆GBmax

(0.95 kcal/mol).

Additionally, to gain better insight into the classification of pathogenicity based upon
the above-discussed methodology, we also used folding (∆∆GFmax) and binding (∆∆GBmax)
free-energy changes to separate benign from pathogenic CDKL5 variants, with label-flip-
invariant metrics (AUROC_sym, balanced accuracy, and MCC_sym) indicating predictive
trends rather than precise performance due to the small dataset (13 variants: 4 benign and
9 pathogenic; see Supplementary Figure S2 and related description).

2.3.5. Variants Reclassification Based on ∆∆Gfolding and ∆∆Gbinding Thresholds

Before reclassification, folding ∆∆GFmax for the four benign variants ranged from 0.09
to 0.68 kcal/mol, while for nine pathogenic variants, it ranged from 0.86 to 3.42 kcal/mol; a
midpoint threshold of 0.77 kcal/mol cleanly separates the two classes (benign/pathogenic)
(Figure 9A). After applying this cutoff to total missense variants (112), the benign group
grew to 14 (∆∆Gfolding range 0.09–0.72), and the pathogenic group to 98 (∆∆Gfolding range
0.79–4.2 kcal/mol) (Figure 9B). Figure 9C shows how each original germline category
(e.g., “benign/likely benign” and “uncertain significance”) redistributed. For example,
29 “uncertain significance” variants moved to pathogenic and 1 to benign.

Similarly, binding ∆∆GBmax for benign variants originally spanned 0.45–0.82 kcal/mol,
and for pathogenic variants, 0.95–1.55 kcal/mol, with a threshold of 0.88 kcal/mol
(Figure 9D). Reclassification of 112 total variants yielded 32 benign (∆∆Gbinding range:
0.41–0.88 kcal/mol) and 80 pathogenic (∆∆Gbinding range: 0.90–2.14 kcal/mol; Figure 9E).
Figure 9F shows that among variants of “uncertain significance”, 18 were reclassified
as pathogenic and 12 as benign. Overall, these distributions and reclassification counts
demonstrate that both ∆∆GFmax and ∆∆GBmax thresholds logically classify CDKL5 variants
by their clinical impact.
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Figure 9. Changes in folding (∆∆Gfolding) and binding (∆∆Gbinding) in kcal/mol free ener-
gies provided mechanistic insights that supported the reclassification of variant pathogenicity.
(A,B,D,E) Violin plots of ∆∆Gfolding (A,B) and ∆∆Gbinding (D,E) distributions, both before
(A,D) and after (B,E) reclassification of variants. The x-axes label the group (benign and pathogenic),
with sample size in parentheses. Blue violins (left) are benign, orange violins (right) are pathogenic,
and the dashed gray line marks the classification thresholds. (C,F) Grouped-bar charts summarizing
original versus reclassified counts for folding (C) and binding (F). In them, the light gray bars show
the original germline classification counts, blue bars are variants reclassified as benign, and orange
bars are variants reclassified as pathogenic.

2.3.6. Variants Reclassification Based on Pathogenicity Score

In Figure 10, the top-left panel (PolyPhen-2), every one of the 112 recalled variants
was called pathogenic; PolyPhen-2 reclassified all 12 “benign/likely benign” and all 30 “un-
certain significance” variants as pathogenic, resulting in 100% sensitivity but no specificity.
In Figure 10, the top-right panel (MutPred2) shows 29 benign recalls versus 83 pathogenic;
it retained the four original benign variants, reclassified 10 of 12 “benign/likely benign” as
benign, and split “uncertain significance” into 8 benign and 22 pathogenic.
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Figure 10. Comparative reclassification of CDKL5 germline variants by four pathogenicity predictors.
Each panel represents the initial distribution of CDKL5 germline variant classification (gray bars),
including benign, benign/likely benign, conflicting classifications of pathogenicity, likely benign,
likely pathogenic, pathogenic/likely pathogenic, and uncertain significance. These are compared
with how each computational tool reassesses the same variants as either benign (blue) or pathogenic
(orange). The four panels, shown clockwise from the top left, represent outputs from PolyPhyn-2,
Mutpred2, ESM-1v, and AlphaMissense. Numeric labels above each bar indicate variant counts
per category.

In Figure 10, the bottom-left panel (ESM-1v), 20 variants were re-established as benign
and 92 pathogenic; ESM-1v also preserved all four true benign variants, re-established
8/12 “benign/likely benign” correctly, and categorized 4 of 30 “uncertain significance” as
benign. Finally, in Figure 10, the bottom-right panel, AlphaMissense called 14 benign and
98 pathogenic, capturing 3 of 4 original benign variants and 7 out of 12 “benign/likely
benign”, but only 3 of 30 “uncertain significance” as benign. Overall, MutPred2 and ESM-1v
(top-right and bottom-left in Figure 10) showed the best balance between detecting true
positives and avoiding false ones. In contrast, PolyPhen-2 and AlphaMissense (Figure 10:
top-left and bottom-right) tended to overpredict pathogenic variants.

Upon application of evolution-based pathogenicity predictors (Polyphen-2, MutPred2,
ESM-1v, and AlphMissense) to predict the pathogenicity of curated CDKL5 variants on
its kinase domain (n = 112 variants), we found that most of these approaches failed to
cleanly separate benign from pathogenic variants. For this, “accuracy” was defined
as the proportion of variants correctly classified as benign (“benign”, “benign/likely
benign”, and “likely benign”) versus non-benign (“likely pathogenic”, “pathogenic”,
“pathogenic/likely pathogenic”, “uncertain significance”, and “conflicting classifications
of pathogenicity”). Predictions of “benign” were considered correct only for variants
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within the benign group; otherwise, predictions of “pathogenic” were considered cor-
rect. This binary grouping was chosen to allow for direct comparison across pathogenic-
ity methods, though it systematically favors predictors that force ambiguous categories
(“uncertain significance”/“conflicting classification of pathogenicity”) into pathogenic
(Supplementary Table S6).

Polyphen-2 achieved the highest apparent accuracy (93.8%), but it misclassified
2 known “benign” variants as “pathogenic” and reassigned 29 “uncertain significance”
and 10 “conflicting classifications of pathogenicity” variants to the “pathogenic” cate-
gory. MutPred2 showed 77.7% accuracy, with 1 known pathogenic variant mislabeled
as “benign”, and shifted 22 “uncertain significance” variants to “pathogenic”. Notably,
ESM-1v correctly classified all strictly annotated variants (benign 4/4; pathogenic 9/9),
demonstrating perfect recall on curated “benign” and “pathogenic” cases. However,
its overall accuracy was 85.7%, reduced by overcalling among ambiguous categories
(26 “uncertain significance” and 9 “conflicting classifications of pathogenicity” reassigned
as “pathogenic”). AlphaMissense reached 89.3% accuracy, misclassifying 1 benign variant
as pathogenic and forcing 27 “uncertain significance” and 10 “conflicting classification of
pathogenicity” cases into “pathogenic”.

Overall, while around 25% (ESM-1v; one out of four methods) predictors perform
relatively well on strictly benign/pathogenic variants, they consistently over-predict
pathogenicity in ambiguous categories: “uncertain significance” or “conflicting classi-
fication of pathogenicity” (Supplementary Table S4). This inconsistency motivates the
CDKL5 variant reclassification strategy grounded in protein thermodynamics, whereby
thresholds of ∆∆Gfolding and ∆∆Gbinding are applied to capture variant-induced destabi-
lization of structure and interaction energetics, thereby resolving ambiguous cases on the
basis of underlying biophysical principles.

Therefore, pathogenicity predictors sometimes fail to distinguish between variants
already annotated as benign or pathogenic in curated databases. Meanwhile, the thermody-
namic approach, using folding free energy change ∆∆GFmax and binding free energy change
∆∆GBmax, was able to clearly separate these known pathogenic and benign variants. Based
on this thermodynamic reclassification, on the kinase domain of CDKL5, out of 112 vari-
ants, 86 pathogenic variants showed greater folding destabilization (∆∆GFmax > ∆∆GBmax).
This variant reclassification according to the American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines is pro-
vided in Supplementary Table S8. In the CDKL5 kinase domain (Figure 11), these residues
are mapped in red spheres and exhibit potential sites for the development of drugs aimed
at enhancing protein stability. In contrast, seventeen pathogenic variants show higher
or equal binding destabilization (∆∆GFmax ≤ ∆∆GBmax). These residues, shown in blue
in Figure 11, are the potential targets for developing therapeutic interventions aimed at
restoring binding between mutant CDKL5 and its binding partners.
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Figure 11. Structural mapping of thermodynamically reclassified pathogenic CDKL5 variants within
the kinase domain. Thermodynamically reclassified pathogenic variants are mapped on the CDKL5
kinase domain based on their relative impact on protein folding and binding stability. Variants exhibit-
ing higher folding destabilization than binding destabilization (∆∆GFmax > ∆∆GBmax) are annotated
in red with transparent-surface rendering. Conversely, variants where binding destabilization is
equal to or exceeds folding destabilization (∆∆GFmax ≤ ∆∆GFmax) are annotated in blue.

3. Discussion
Understanding the molecular mechanism of a disease is crucial for the development

of treatment. In the case of CDKL5 deficiency, there are many pathogenic variants and
many genotypes that result in the disease. Our study extended the list of known missense
variants in CDKL5 and further enriched the list of genotypes, resulting in 156 missense
variants in the full-length CDKL5 protein, while 112 missense variants fall within the kinase
domain, and these 112 missense variants in the kinase domain are our focus of variant
reclassification. Among them, 88.4% (99 out of 112) do not have strict classification as either
pathogenic or benign; these variants were re-classified using the methodology described in
the manuscript, resulting in 98 pathogenic and 14 benign variants based on ∆∆Gfolding. In
parallel, 80 pathogenic and 32 benign variants were reclassified based on ∆∆Gbinding.

A crucial component for any drug discovery is the knowledge of the function and
details of the function of the corresponding protein target. To facilitate this, we carried out a
literature search and identified four additional partners, which combined with the original
review articles [32], resulted in twenty-four interacting partners. Furthermore, structural
modeling was carried out to predict 3D structures of the corresponding CDKL5-partner
complexes, and four acceptable models were delivered.
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While knowledge of the variants in CDKL5, both pathogenic and benign, and the
knowledge about CDKL5’s function and interacting partners are important for drug devel-
opment, still one needs to find out what the phenotype is that is caused by the genotypes.
Recent works [67–69] demonstrated that there is a strong linkage between pathogenicity
and thermodynamical properties as folding and binding free energies. Building on these
observations, we predicted the folding free energy changes caused by the above-mentioned
variants and showed that indeed the pathogenic variants destabilize the CDKL5 protein
much more than benign variants (Supplementary Table S5). The same was demonstrated
for the binding free energy changes caused by the variants. Thus, the study collapsed the
genotypes into two phenotypes: changes in folding and binding free energy. This was used
to reclassify variants with uncertain significance.

Combining all together, the study suggests that therapeutic solutions for variants
(F13S, G20D, G20R, E21G, G22E, G22V, Y24C, V27A, C30Y, R31G, T35I, I41F, K42R, L64P,
L67F, L67P, N71D, N71S, I72N, I72T, K76E, R80H, G83V, L97P, V107D, Y117C, L119R,
A122T, W125C, C126Y, H127R, V132G, D135G, P138L, L141F, I143N, I143V, H145Y, N146S,
K150R, C152F, C152R, D153G, G155D, A157P, A157V, R158H, R158P, R175S, W176C, W176G,
W176R, Y177C, Y177S, R178Q, S179F, E181A, L182P, L184H, A186T, D193G, D193H, D193N,
G198D, G198R, C199R, L201P, G202E, E203D, E203K, G207E, P209R, G213E, Q219K, Q219P,
L220P, K225R, L227R, Y262H, L271P, R285S, T288I, C291R, C291Y, T296A, and L302F)
should be sought in developing drug(s) that can enhance mutant CDKL5 stability. For
the variants (G20V, G25R, A40V, R59P, R65Q, R80L, H127Y, D153V, V172I, A173D, T174N,
R178P, R178W, P180L, D193V, S196L, and G213R), the efforts should be to develop drugs
capable of enhancing binding affinity of the mutant CDKL5 protein to the corresponding
partner. Such a drug development was demonstrated to be quite successful [70,71], and
strategies for carrying out such development are outlined in a recent review [72]. Figure 11
shows the CDKL5 catalytic domain with all pathogenic mutations mapped onto the 3D
structure. One can appreciate that mutations that are predicted to affect mostly stability
are grouped within several structural regions and can be targeted by the same drug, while
mutations affecting mostly the binding affinity are grouped in different parts of the CDKL5
structure and should be targeted with different small molecules, potential drugs. This
demonstrated that while the pathogenic mutations are many, their effect can be mitigated
with several drugs only.

4. Materials and Methods
4.1. Data Collection

To compile CDKL5 missense variants, we first queried the ClinVar [44] database
using the keyword “CDKL5”. Next, we obtained the GRCh38-aligned X-chromosome
VCF from the 1000 Genome Project (1KGP) from IGSR [73] and used Ensembl’s variant
effect predictor v113.0 (VEP) [48] tool to extract CDKL5-gene region missense variants, and
discarded non-CDKL5 and duplicate calls. In a recent study [46], a set of 76 CDKL5 variants
was curated for additional unique missense entries. After merging these three resources
(ClinVar, 1KGP, literature), we matched each variant’s wild-type amino acid sequence to
the CDKL5 reference sequence, discarded mismatches and eliminated overlaps to yield
a final, non-redundant set of 156 missense variants. Among these 156 missense variants,
112 are within the kinase domain. Each variant’s corresponding allele frequency was
obtained from gnomAD.

4.2. CDKL5 Structure Preparation and Prediction of Complex with Its Binding Partners

The 4BGQ structure was processed using Biopython [74] to eliminate non-standard
residues while retaining essential crystallographic metadata, including the “CRYST1”
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record. The complete CDKL5 amino acid sequence from Uniprot was aligned with the
SEQRES-based sequence extracted from 4BGQ, and any inconsistencies, including engi-
neered mutations, were resolved. We applied Modeller 10.4 [65], and we reconstructed any
missing or altered residues, considering the cleaned 4BGQ [64] as the template structure
and the UniProt sequence as the modeling target. This pipeline confirmed a native-like con-
formation with uninterrupted backbone continuity from residue 1 to 302 (kinase domain),
yielding a structure suitable for the downstream analysis. Additionally, we employed
ColabFold 1.5.5 [66], a high-throughput adaptation of AlphaFold2, to model the structures
of CDKL5 and its binding partners complex. Protein sequences were curated and formatted
in FASTA for batch-mode processing.

4.3. Folding Free Energy Calculations

To compute the impact of variants (point mutations) in folding free energy on the
human CDKL5 protein, we employed several State-of-the-Art computational methods
that utilize both sequence and structure information of the protein. Using the UniProt ID
O76039, the amino acid sequence of human CDKL5 was obtained, while the kinase domain
of the CDKL5 X-ray crystal structure was collected from the Protein Data Bank using the
PDB ID 4BGQ. Subsequently, the missing and mutated residues in the X-ray structure were
reverted to wild-type using the Modeller 10.4 program [65].

DDGemb [75] is a deep learning-based approach for predicting changes in ∆∆Gfolding

values upon single and multi-point variants using only protein sequence data. It utilizes
embeddings generated from the ESM2 [76] protein language model (pLM) and processes
them using a Transformer-based neural network. Once it encodes the wild-type and
mutant sequences, their residue-level embeddings are then differentiated and applied
to predict the change in stability. The model was trained on the S2450 dataset (derived
from S2648, derived from ProTherm and FireProtDB [77–79]), while on their independent
S669 benchmark dataset, it achieved a PCC of 0.68, which outperforms many established
methods [75].

DDMut [80] is a structure-based deep-learning framework that predicts folding free
energy changes (∆∆Gfolding) upon single and multiple point variants. It employs a Siamese
neural network architecture that utilizes both forward and reverse mutations [80]. It in-
tegrates graph-based representations of the local three-dimensional surroundings of the
mutated residue with structural and biochemical attributes, including solvent accessibility,
residue depth, and atomic interactions [80]. The model processes these features through
convolutional and Transformer layers, enabling it to learn both localized and broad muta-
tion impacts [80]. For single-point mutations, they curated their training dataset from S2648,
which is originally derived from ProTherm and FireProtDB [77–79]. For their multiple
point mutations, they prepared their training dataset from the DynaMut2 [81] training set,
termed SM1242. They also expanded their dataset by reversing each mutation. DDMut
achieved a PCC up to 0.70 on multiple independent blind test sets [80].

Single-amino-acid folding free energy changes SEQ (SAAFEC-SEQ) [82] is a machine-
learning method that utilizes sequence-based information to predict folding free energy
changes (∆∆Gfolding) upon single-point mutations [82]. It employs knowledge-based terms
and evolutionary information and does not require a 3D structure of the protein [82]. This
method uses the gradient-boosting decision tree algorithm. Its features include sequence
features (neighbors); physicochemical properties of mutation sites; and evolutionary infor-
mation, such as Pseudo Position Specific Scoring Matrix (PsePSSM) and neighbor mutation
conservation scores [82].

DDGun and DDGun3D [83] are untrained predictors for sequence- and structure-based
methods that predict changes in protein folding stability (∆∆Gfolding) due to single and
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multiple point mutations. DDGun depends on a linear combination of statistical scores such
as BLOSUM62 similarity [84], Skolnick potential, and hydrophobicity differences [83]. It
also integrates structural features such as solvent accessibility and the Bastolla-Vendruscolo
potential [83]. These weights are then optimized using widely used training datasets S2648
(derived from ProTherm and FireProtDB) [77–79], VariBench [85], as well as manually
curated datasets. Performance assessments indicate achievement of Pearson correlation
coefficients of approximately 0.5 for single-site variants and around 0.5 for the multiple-site
variants [83].

Impact of Non-synonymous variations on Protein Stability-Multi-Dimension (INPS-
MD) [86] is a method for the prediction of protein stability changes upon single point
variation from protein sequence (INPS) and structure (INPS-3D). INPS employed sup-
port vector regression (SVR) with radial basis function (RBF) kernels to analyze features
including substitution matrices, hydrophobicity indices, and evolutionary conservation
data [86]. The structure-based version, INPS-3D, integrates structural descriptors such as
relative solvent accessibility and energy difference scores derived from contact potential
calculations [86]. Both sequence and structure-based models were trained on the widely
used S2648 [77] dataset and benchmarked using blind test sets, which are a subset of
the S2648 and a curated P53 mutation dataset [86]. The INPS-3D achieves a Pearson’s
correlation of 0.58 in cross-validation, while for the blind tests it scores 0.72. test set, while
the sequence-based method INPS performs slightly lower.

mCSM [87] is a structure-based machine learning approach that utilizes a graph-
based signature to grasp the geometric and chemical environment of introduced mutations
and is capable of predicting the protein folding stability and protein–protein or protein–
DNA binding affinity changes. It employs graph-based structural signatures that encode
the 3D environment of the mutated residue by measuring the distance patterns between
atoms, grouped by pharmacophoric properties (hydrophobicity, charge, hydrogen bonding
potential) [87]. These feature representations are used as input to a Gaussian Process
regression model trained on different datasets. Using ProTherm-derived S2648, S1925
and S350 datasets [77] the protein folding stability model was trained and achieved a
PCC of 0.824 on S1925 and 0.69 on S2648. On the other hand, using SKEMPI and ProNIT
datasets, mCSM achieved PCCs of 0.80 for protein–protein affinity changes and 0.67 for
protein–DNA affinity changes [87].

Using a Support Vector Machine (SVM)-based method, I-Mutant2.0 [88] was deployed
to predict the stability changes due to single amino acid alterations, both at the sequence
and structure level. It uses a neural network system to predict the direction in which a
mutation affects protein stability, rather than providing a direct ∆∆Gfolding value [88].

4.4. HADDOCK3 Protein–Protein Docking

To investigate the molecular interaction between CDKL5 and its binding partners
(e.g., SOX9 and AMPH1), we carried out a systematic protein–protein docking using HAD-
DOCK3 [89], which stands for high ambiguity-driven docking, a versatile and modular
platform for integrative structural modeling of bimolecular complexes. HADDOCK3 is
fundamentally a data-driven docking platform that integrates experimental, predicted, or
inferred interaction information to guide biomolecular complex formation [89]. Its standard
workflow comprises four main modules: “topoaa” for generating topology files, “rigid-
body” for initial rigid-body docking and sampling, “flexref” for refining the interface with
limited flexibility, and “emref” for performing energy minimization in solvent [89]. These
modules are customizable, as they can be reordered or skipped depending on the modeling
objective [89]. To conduct docking towards biologically relevant interfaces, HADDOCK3
allows the application of spatial restraints, including Ambiguous Interaction Restraints
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(AIRs), which permit flexible pairing among sets of potential interface residues, and un-
ambiguous restraints, which enforce specific residue–residue contacts, ensuring guided
sampling around plausible interface regions [89].

In this study, we prepared the CDKL5 structure (PDB ID: 4BGQ) by rebuilding missing
residues and reverting mutated residues (described in the CDKL5 structure building step) as
chain A using Modeller 10.4 [65] to ensure structural completeness. CDKL5 was considered
chain A, while the structure of its binding partners was obtained from AlphaFold2 [90], and
their chains were designated as Chain B. Upon curation of consensus motif (Table 1) through
the literature review, these motif annotations were used to define active interface residues
on both interacting proteins. From these, unambiguous distance restraints were generated
using the CNS engine in “tbl” format, which specifies direct Cα-Cα contacts between
residue pairs. CDKL5 and its binding partners’ dockings were performed to generate a
protein–protein complex, where CDKL5 interacts with binding partners around the defined
residues in the unambiguous distance restraints file. Afterwards docked complex was used
for downstream applications such as binding free energy calculation upon mutation using
different available programs.

4.5. Binding Free Energy Calculations

In order to assess the impact of CDKL5 missense variants on protein–protein binding
affinity (∆∆Gbinding) with its binding partners, the following computational methods were
employed: SAAMBE-3D, FoldX, mCSM-PPI2, DDMut-PPI, and iSEE.

SAAMBE-3D [91] is a fast, in-house-developed structure-based machine-learning tool
that can quantify the change in binding free energy (∆∆Gbinding) of protein–protein com-
plexes [91]. SAAMBE-3D utilizes 33 knowledge-based features and an XGBoost regression
model to predict the ∆∆Gbinding upon providing the protein–protein complex and a list
of mutations. It was trained on the SKEMPI v2.0 dataset while having high predictive
accuracy (PCC~0.8).

The iSEE [92] is the interface Structure, Evolution, and Energy-based method, which
predicts the impact of mutations on the protein–protein binding free energy (∆∆Gbinding)
by applying a machine-learning framework. It uses a random forest regression model that
was trained using the SKEMPI v1.1 dataset, which provides experimentally determined
∆∆Gbinding values for a wide variety of protein complexes [92]. For each mutation, iSEE
builds a feature vector that integrates structural, energetic, and evolutionary information.
The structural features include interface energy terms calculated from wild-type complexes
using HADDOCK: van der Waals energy (Evdw_wt), electrostatic energy (Eelec_wt),
desolvation energy (Edesolv_wt), and buried surface area (BSA_wt). To capture energetic
shifts introduced by the mutations, the mutation-induced changes are also included, and
these terms are as follows: Evdw_diff, Eelec_diff, Edesolv_diff, and BSA_diff. The mutation-
induced energy shifts were calculated as differences between the mutant and wild-type
values, using the following formula:

X_diff = X_mutant − X_wild-type, where X ∈ {Evdw, Eelec, Edesolv, BSA}

Moreover, the iSEE model utilizes the information from the amino acid sequence,
including the original and mutated amino acids (represented with one-hot encoding) and
scores that show how conserved each position is across similar proteins, which come
from position-specific scoring matrices (PSSMs) [93], including PSSM_wt, PSSM_diff, and
PSSMic. To assess the consequence of the CDKL5 missense variants on protein–protein
interactions, we applied a structured pipeline by combining homology modeling, docking,
and energy-feature extraction for the preparation of iSEE input data.
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In this study, CDKL5 wild-type and mutant structures were first generated using
Modeller 10.4 [65], where collected clinical mutations were introduced individually in the
experimentally available structure 4BGQ. Upon CDKL5 mutant model generation, the
partner protein structures were obtained from AlphaFold2 [90]. Ambiguous interaction
restraints were defined using motif-based residue ranges, and both wild-type and mutant
complexes were docked with their respective binding partners using the HADDOCK3
program [89]. After docking, HADDOCK3 output energies (Evdw, Eelec, Edesolv, and
BSA) were obtained from the top-scoring clusters for both wild-type and mutant complexes.
Parallelly, to compute PSSMs for CDKL5, evolutionary conservation profiles were generated
using PSI-BLAST [94]. After compiling all energetic and sequence-derived features into a
unified feature matrix compatible with iSEE, the trained random forest regression model
was applied to predict the ∆∆Gbinding values for each CDKL5 variant across its respective
protein–protein complexes.

4.6. CDKL5 Variant Reclassification

CDKL5 variant reclassification was performed via structure-based ∆∆Gfolding and
∆∆Gbinding metrics in kcal/mol, integrating folding stability (∆∆GFmax) and CDKL5-target
protein partner’s binding affinity (∆∆GBmax) across the CDKL5 kinase domain (residues
1–302). ∆∆GFmax captured the maximal absolute ∆∆Gfolding per variant across methods,
while ∆∆GBmax reflected the peak mean ∆∆Gbinding across four substrate complexes. Em-
pirical thresholds, derived from ClinVar-annotated “benign” and “pathogenic” variants,
enable the reassignment of variants. Subsequently, the performance of PolyPhen-2 [95],
MutPred2 [96], ESM-1v [76], and AlphaMissense [97] was employed to predict binary
pathogenicity labels (benign/pathogenic) and compare them against ClinVar annotations.
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Abbreviations
The following abbreviations are used in this manuscript:

1KGP The 1000 Genomes Project
AMPH1 Amphiphysin1
ARHGEF2 Rho guanine nucleotide exchange factor 2

CACNA1E/Cav2.3
Voltage-dependent R-type calcium channel subunit alpha-1E
(Cav2.3)

CDD CDKL5 Deficiency Disorder
CDKL5 Cyclin-Dependent Kinase-Like 5
CEP131 Centrosomal protein of 131 kDa
CVI Cortical/cerebral visual impairment
DLG5 Disks large homolog 5
DNMT1 DNA methyltransferase 1
EB2/MAPRE2 Microtubule-associated protein RP/EB family member 2
ELOA Elongin A
EP400 EE1A-binding protein p400
GATAD2A GATA zinc finger domain containing 2A
GRCh38 The Genome Reference Consortium Human Build 38
GTF2I General transcription factor II-I
HDAC4 Histone deacetylase 4
IGSR The International Genome Sample Resource
IQGAP1 IQ Motif Containing GTPase Activating Protein 1
MAP1S Microtubule-associated protein 1S
MeCP2 Methyl-CpG binding protein 2
NGL-1/KIAA1580/LRRC4C Netrin-G ligand-1
OMIM Online Mendelian Inheritance in Man
PPP1R35 Protein phosphatase 1 regulatory subunit 35
PSD95/DLG4 Postsynaptic density protein 95
SHTN1/SHOT1 Shootin1
SMAD3 Mothers against decapentaplegic homolog 3
SOX9 Transcription factor SOX-9
SQSTM1/p62 Sequestosome-1(p62)
STK9 Serine threonine kinase 9
TTDN1 TTD non-photosensitive 1 protein
VDW Van der Waals
XCI X-chromosome inactivation
ZNF219 Zinc finger protein 219
∆∆Gbinding Binding free energy change
∆∆Gfolding Folding free energy changes

∆∆GBmax

Maximum binding free energy change: For each variant, the
maximum complex-averaged |∆∆Gbinding| across selected
CDKL5-target protein–protein interactions.

∆∆GFmax
Maximum folding free energy change: For each variant, the highest
∆∆Gfolding value across several computational methods.
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